

Fruit and Nut Notes

- Volume 11 -

DECEMBER 2013

UC Cooperative Extension-Tehama County 1754 Walnut Street, Red Bluff, CA 96080 Phone (530) 527-3101 E-mail: rpbuchner@ucanr.edu

Website: cetehama@ucanr.edu

Richard P. Buchner

UC Farm Advisor -Orchard Crops, Tehama County Director

Prepared by Cindy McClain Office Manager/Ag Secretary

SACRAMENTO VALLEY REGIONAL WALNUT NEWSLETTER

IN THIS ISSUE:

- Nitrogen Management Planning
- Training Young Walnut Trees: "Minimum Pruning -vs- No Pruning Compared"
- Managing Ground Squirrels and Pocket Gophers in Orchards
- Winter Cold and Irrigation During Drought

UPCOMING MEETINGS

Private Applicator Continued Education -Dec 12th — 10-12 noon **Tehama Walnut Day—February 7, 2014** — 8 AM-1 PM Tehama Prune Day — February 21, 2014 — 8 AM-1 PM

The University of California) Division of Agriculture & Natural Resources (ANR) prohibits discrimination against or harassment of any person in any of its programs or activities on the basis of race, color, national origin, religion, sex, gender identity, pregnancy (which includes pregnancy, childbirth, and medical conditions related to pregnancy or childbirth), physical or mental disability, medical condition (cancer-related or genetic characteristics), genetic information (including family medical history), ancestry, marital status, age, sexual orientation, citizenship, or service in the uniformed services (as defined by the Uniformed Services Employment and Reemployment Rights Act of 1994: service in the uniformed services includes membership, application for membership, performance of service, application for service, or obligation for service in the uniformed services).

University policy also prohibits retaliation against any employee or person in any of its programs or activities for bringing a complaint of discrimination or harassment pursuant to this policy. This policy also prohibits retaliation against a person who assists someone with a complaint of discrimination or harassment, or participates in any manner in an investigation or resolution of a complaint of discrimination or harassment. Retaliation includes threats, intimidation, reprisals, and/or adverse actions related to employment or to any of its programs or activities

The University is an affirmative action/equal opportunity employer. The University undertakes affirmative action to assure equal employment opportunity for minorities and women, for persons with disabilities, and for covered veterans (including veterans with disabilities, recently separated veterans, Vietnam era veterans, veterans who served on active duty in the U.S. Military, Ground, Naval or Air Service during a war or in a campaign or expedition for which a campaign badge has been authorized, or Armed Forces service medal veterans). University policy is intended to be consistent with the provisions of applicable State and Federal laws.

Inquiries regarding the University's equal employment opportunity policies may be directed to Linda Marie Manton, Affirmative Action Contact, University of California, Davis, Agriculture and Natural Resources, One Shields Avenue, Davis, CA 95616, (530) 752-0495

To simplify information, trade names of products may have been used but no endorsement of named product is intended, nor is criticism implied of similar products which are not mentioned.

Managing Ground Squirrels and Pocket Gophers in Orchards

Roger A. Baldwin, Cooperative Extension Wildlife Specialist, Dept. of Wildlife, Fish, & Conservation Biology, UC Davis

Introduction

Although many vertebrate pests cause problems in orchards, perhaps the most frequent offenders in California are California ground squirrels (*Otospermophilus beecheyi*) and pocket gophers (*Thomomys* spp.). Ground squirrels are 9 to 11 inches in length (excluding tail), mottled grayish-brown in color, and have a semi bushy tail. They dig extensive burrows that may be 5 to 30 feet long, 2.5 to 4 feet below the surface, and about 4 to 6 inches wide. Pocket gophers are short, stout burrowing rodents, usually 6–8 inches in length. They spend most of their time below ground where they use their front legs and large incisors to create extensive burrow systems.

Ground squirrels reproduce only once per year, but average 8 young per litter. Pocket gophers will breed anywhere from 1 to 2 times per year. Therefore, continuous monitoring and control of all these burrowing rodent populations is needed to keep their numbers low. Ground squirrel young are born in early to mid-spring. Pocket gophers can breed at different times throughout the year; however, there is typically a pulse in reproduction toward the middle of spring. As such, control measures implemented before reproductive pulses of all burrowing rodents will often be more effective as there will be fewer individuals to control at that time.

If left unchecked, burrowing rodents will cause extensive damage including consumption of nuts, fruits, and other vegetative plant parts that result in direct loss of crop production; consumption of tap roots and girdling of stems and trunks that results in a loss in vigor of the plant; loss of irrigation water down burrow systems; and chewing on irrigation lines. Mounds and burrow openings can also result in additional problems including serving as weed seed beds, causing damage to farm equipment, and serving as a hazard to farm laborers.

A number of options are currently available for controlling burrowing rodents although most management programs center on toxic baits, burrow fumigants, and trapping. Given space limitations, I will focus on these three options. For additional information on managing ground squirrels and pocket gophers, I suggest checking out the UC IPM Pest Notes (http://www.ipm.ucdavis.edu/PMG/menu.vertebrate.html), as well as the training modules found at the UCCE Vertebrate Pest Control Education website (http://ucanr.edu/sites/vpce/).

Toxic baits

Ground squirrels.—Toxic baits are usually the most cost-effective way for controlling ground squirrels, especially large populations and over large areas. Bait consists of grain or pellets treated with a toxin registered for ground squirrel control. To be effective, the bait must be used at a time of year when ground squirrels are active and feeding on seeds (usually late spring through early summer and again in autumn; Fig. 1). Toxic baits registered for ground squirrel control include the acute toxin, zinc phosphide, and anticoagulant baits (diphacinone and chlorophacinone). Zinc phosphide can be applied through spot-treatments or broadcast applications. Spot treatments are used when a small number of burrow systems are treated. This approach involves lightly scattering bait around each active burrow opening. Alternatively, the bait may be broadcast over a larger area using a mechanical seed spreader. Bait shyness can occur with zinc phosphide baits when squirrels ingest a sublethal dose, thereby becoming sick and learning to avoid the bait during future applications. This can result in low efficacy of zinc phosphide baiting programs. Pre-baiting the area with untreated grain 2 to 3 days prior to the application of zinc phosphide may reduce the chance of bait shyness and improve the effectiveness of baiting programs. Control with zinc phosphide is usually achieved within 48 hours of bait application.

With anticoagulant rodenticides, ground squirrels must ingest several doses of bait over a period of several days. Control is slower but there is less chance of squirrels becoming 'bait-shy'. Another advantage is the availability of an antidote (Vitamin K1) in the event of accidental poisoning of non-target animals (e.g., pets, children, etc.).

Anticoagulants can be applied in bait stations, as spot treatments near burrows, or broadcast over larger areas. Be sure to follow the label directions carefully to determine what application method is appropriate.

Bait stations are commonly used to provide bait for squirrels. Various kinds of bait stations can be used, though all are designed to let squirrels in while excluding larger animals. Bait stations should be placed near runways or burrows and should be secured so that they cannot be tipped over. If squirrels are moving into fields from adjacent areas, bait stations should be placed along the perimeter where squirrels are invading, with one station placed approximately every 100 feet, although closer intervals may be used when the number of squirrels is high. Bait stations should be checked daily at first, then as often as needed to keep the bait replenished. A continuous bait supply is important because if bait feeding is interrupted, the bait's effectiveness is greatly reduced. Any bait that is spilled should be collected, and wet or moldy bait should be replaced. Successful baiting via bait stations usually requires 2 to 4 weeks. Therefore, bait should continue to be supplied until feeding ceases and no more squirrels are observed.

Spot treatments and broadcast applications of anticoagulants follow the general procedure described for zinc phosphide. However, with anticoagulants, bait must be reapplied 3 to 5 days after the initial treatment to ensure that squirrels are exposed to a continual bait supply. Usually, ground squirrels retreat back to burrows when sick and will die there, although up to 20 to 30% of squirrels may die aboveground. As such, be sure to dispose of any visible carcasses to prevent poisoning of any scavengers. Burying within existent burrow systems is a good method as long as carcasses are buried deep enough to discourage scavengers. All rodenticides for aboveground field application are now restricted-use materials, so be sure you are fully versed on all current restrictions for their use before applying for ground squirrel control. Your County Agricultural Commissioner's office is your best source for this information.

Pocket gophers.—There are three baits for pocket gopher control: 1) strychnine, 2) zinc phosphide, and 3) anticoagulants (e.g., chlorophacinone and diphacinone). Both strychnine and zinc phosphide are considered acute toxicants. This means that they kill after a single feeding. Strychnine has historically been available in two concentrations in California: 0.5% and 1.8%. However, due to supply issues, strychnine importation into the U.S. is currently very low. As such, the 1.8% strychnine bait is no longer available for purchase. This is an important consideration, as the 1.8% strychnine has long been considered the most efficacious of all the pocket gopher baits. Going forward, growers will need to identify an alternative rodenticide if they wish to continue to use baiting as a pocket gopher management option.

Zinc phosphide is also available for pocket gopher control; it comes in a 2.0% concentration. Bait acceptance can be low with zinc phosphide, as it has a distinctive odor and taste that pocket gophers are often averse to. Anticoagulants such as chlorophacinone and diphacinone are multiple feeding toxicants. With these rodenticides, individuals must consume the bait multiple times over the course of 3 to 5 days to receive a toxic dose. This means larger amounts of bait are required to maintain a ready bait supply over this time period. Because of this, acute toxicants are typically preferred over anticoagulants for pocket gopher control. However, there are several new products on the market that contain these same toxicants but utilize a different delivery mechanism for providing the toxicant to the pocket gopher. As such, some of the newer products may be more effective and are in need of testing.

There are two primary methods for baiting in fields: 1) hand baiting with an all-in-one probe and bait dispenser, and 2) a burrow builder. Hand baiting can be effective if you have relatively few pocket gophers in a field. For this approach, an all-in-one probe and bait dispenser is used to locate a tunnel. Once the tunnel is located, bait is directly deposited via a hand-crank or lever. Typically, it is recommended that burrow systems be treated at least twice to maximize efficacy.

Although hand baiting can be effective for smaller pocket gopher populations, the burrow builder can be a more practical method for treating larger areas. The burrow builder is a device that is pulled behind a tractor on a 3-point hitch and creates an artificial burrow at a set depth. Bait is then deposited at set intervals along the artificial burrow. While engaging in normal burrowing activity, pocket gophers will come across these artificial burrows and consume the bait within. This device must be used when soil moisture is just right. If the soil is too dry, the artificial burrow will cave in, but if it is too wet, the burrow will not seal properly and will allow light to filter in; pocket gophers will not travel down burrows if they are not sealed. Although convenient, the efficacy of this method has varied extensively among growers. Experimentation is key to determining the applicability of this approach for each grower.

Fumigation

Burrow fumigants can be very effective at controlling ground squirrels and pocket gophers. Primary burrow fumigants are aluminum phosphide and gas cartridges. However, as of January 1, 2012, carbon monoxide producing machines can now be used to apply carbon monoxide to burrow systems. Given the fact that they just became legal in California, researchers are still in the process of collecting data on their efficacy.

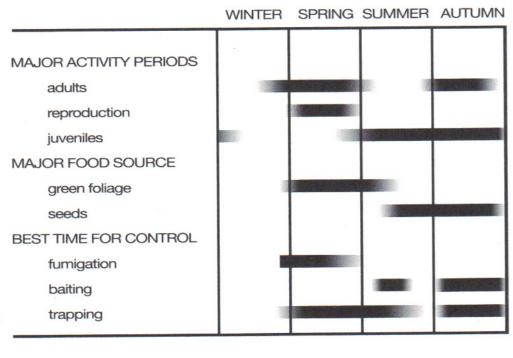
Ground squirrels.—Late winter and early spring are the best times to fumigate for ground squirrels as moist soil is needed to hold toxic gases inside the burrow system (Fig. 1). Conducting ground squirrel control prior to the birth of young will also dramatically decrease their detrimental effect on the population. However, you must wait to fumigate until after ground squirrels have emerged from hibernation; ground squirrels wall themselves off in their burrows when hibernating so fumigation is not effective at this time. Fumigation is also possible later in the year as long as sufficient soil moisture is present, although it is ineffective when ground squirrels are estivating during the hottest times of the year as ground squirrels again wall themselves off in their burrows. For safety reasons, do not use fumigants in burrows that may extend beneath buildings.

Two primary fumigants are used: gas cartridges and aluminum phosphide. Gas cartridges provide an easy and relatively safe way to fumigate ground squirrel burrows. Typically, one cartridge is used for each burrow that shows signs of activity, although larger burrow systems may require two or more cartridges. For application, the cartridges are ignited and shoved into the burrow fuse first using a shovel handle or stick. The burrow entrance is then sealed with soil to hold the toxic gases within.

Aluminum phosphide is a very effective fumigant, often outperforming gas cartridges. When aluminum phosphide tablets come into contact with moist soil in the burrow, they produce phosphine gas, which is highly toxic to any animal. Aluminum phosphide is a restricted-use material for which a permit is required for purchase or use. Application personnel should be trained in the material's proper use and on its potential hazards.

<u>Pocket gophers.</u>—Aluminum phosphide is the primary fumigant used for pocket gopher control; it is quite effective and has a very low material cost. The primary method for applying aluminum phosphide is similar to that of hand baiting. You use a probe to find a pocket gopher tunnel, and drop the label designated number of tablets into the probe hole. The opening is then sealed to eliminate light from entering and the toxic gases from exiting the tunnel. Typically, you treat each burrow system twice to maximize efficacy. The key with aluminum phosphide treatments is to only apply when soil moisture is relatively high. Because of this, fumigation is typically most effective in late winter and early spring.

However, fumigation after irrigation can also be a good strategy. Please note that aluminum phosphide is a restricted-use material. Applicators must be licensed and trained on its proper use.


Trapping

Ground squirrels.—Because trapping is time-consuming, it is most practical for small infestations of ground squirrels. Additionally, trapping is effective at certain times of the year when other control options are ineffective (Fig. 1). Several types of kill traps, including modified pocket gopher box traps, tube traps, and Conibear traps, are effective. Because these are kill traps, be sure to take precautions to eliminate capture of non-target wildlife and pets.

Live-traps, such as wire-cage and multiple-capture traps, can also be used to capture ground squirrels. Because these traps keep animals alive after capture, they are useful in areas where non-target captures are a concern (e.g., areas with pets, children, etc.). However, ground squirrels must be euthanized by the trapper upon capture as translocation is illegal.

<u>Pocket gophers.</u>—Trapping is safe and one of the most effective although labor intensive methods for controlling pocket gophers. Nonetheless, the time for application may be offset by effectiveness. Several types and brands of traps are available. The most common type is a two-pronged, pincher trap such as the Macabee, Easy Set, or Gophinator, which the pocket gopher triggers when it pushes against a flat, vertical pan. Another popular type is the choker-style box trap, although these traps require extra excavation to place and may be a bit bulky to be practical in a large field setting. All pocket gopher traps can be effective, although the Gophinator has proven to be highly effective.

Figure 1. Activity periods and preferred food sources for the California ground squirrel. Activity periods vary somewhat from one growing area to another depending on local climate. To choose the most effective control action for ground squirrels and the proper timing, you need to know when they are active and what their preferred food sources are.

